Intergrerend project dynamische systemen

H. Waalkens

2009

Exam Problem Sheet

The exam consists of 5 problems. You may answer in Dutch or in English. You can achieve 38 points in total.

1. [3+3+3 Points.]

Consider the family of differential equations

$$x' = ax + \sin x \,,$$

where a is a parameter.

- (a) Sketch the phase line when a = 0.
- (b) Use the graphs of ax and $\sin x$ to determine the qualitative behavior of all the bifurcations that occur as a increases from -1 to 1.
- (c) Sketch the bifurcation diagram for this family of differential equations.

2. [3+2+4 Points.]

Consider the differential equation $x' = x + \cos t$.

- (a) Find the general solution of this equation.
- (b) Prove that there is a unique periodic solution for this equation.
- (c) Compute the Poincaré map $p: t = 0 \rightarrow t = 2\pi$ for this equation and use this to verify again that there is a unique periodic solution.

3. [5 Points.]

Consider the harmonic oscillator equation (with mass m = 1)

$$x'' + bx' + kx = 0,$$

where $b \ge 0$ and k > 0. Identify the regions in the relevant portion of the b - k plane where the corresponding system has similar phase portraits.

4. [4 Points.]

Consider the first order differential equation

$$x' = f_a(x)$$

for which $f_a(x_0) = 0$ and $f'_a(x_0) \neq 0$. Prove that the differential equation

$$x' = f_{a+\epsilon}(x)$$

has an equilibrium point $x_0(\epsilon)$ where for ϵ sufficiently small, $\epsilon \mapsto x_0(\epsilon)$ is a smooth function satisfying $x_0(0) = x_0$.

- 5. [3+2+2+4 Points.]
 - (a) Give the definition of stability and asymptotic stability for equilibrium points.
 - (b) Give the definition of an hyperbolic equilibrium point. What can one say about the stability of an hyperbolic equilibrium point?
 - (c) How is a saddle equilibrium point of a planar system defined? What is its canonical form?
 - (d) State the stable curve theorem for saddle equilibrium points of planar systems.